Edge-colouring of join graphs
نویسندگان
چکیده
A join graph is the complete union of two arbitrary graphs. We give sufficient conditions for a join graph to be 1-factorizable. As a consequence of our results, the Hilton’s Overfull Subgraph Conjecture holds true for several subclasses of join graphs. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Edge-colouring of regular graphs of large degree
We consider the following conjecture: Let G be a k-regular simple graph with an even number n of vertices. If k ≥ n/2 then G is k-edge-colourable. We show that this conjecture is true for graphs that are join of two graphs and we provide a polynomial time algorithm for finding a k-edge-colouring of these graphs. c © 2007 Elsevier B.V. All rights reserved.
متن کاملThe automorphism group of the reduced complete-empty $X-$join of graphs
Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...
متن کاملOn the revised edge-Szeged index of graphs
The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...
متن کاملA greedy method for edge-colouring odd maximum degree doubly chordal graphs
We describe a greedy vertex colouring method which can be used to colour optimally the edge set of certain chordal graphs. This new heuristic yields an exact edge-colouring algorithm for odd maximumdegree doubly chordal graphs. This method shows that any such graph G can be edge-coloured with maximum degree (G) colours, i.e., all these graphs are Class 1. In addition, this method gives a simple...
متن کاملEquitable neighbour-sum-distinguishing edge and total colourings
With any (not necessarily proper) edge k-colouring γ : E(G) −→ {1, . . . , k} of a graph G, one can associate a vertex colouring σγ given by σγ(v) = ∑ e∋v γ(e). A neighbour-sumdistinguishing edge k-colouring is an edge colouring whose associated vertex colouring is proper. The neighbour-sum-distinguishing index of a graph G is then the smallest k for which G admits a neighbour-sum-distinguishin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 355 شماره
صفحات -
تاریخ انتشار 2006